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Solutions to tutorial exercises for stochastic processes

T1. We will prove the statement by induction on n. The induction base is exactly the Feller
property. Now suppose
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is an element of Cy(.5). For n+ 1 we can use the tower property and the Markov property
to obtain
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Let

g(l’) = E* |:fTZ+1(th+1_tn)j| )
then g(x) € Cy(S) by the Feller property. Therefore (f,g)(x) € Cy(S). We conclude that

n+1

is an element of Cy(S) by the induction hypothesis.
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T2. (a) We only prove property (S2) of the probability semigroup, the other properties were
proven in the lecture. We have

T2 = fll = sup [(Tif) (@) = f(2)| = sup [E° [f(z + By)] — f(2)]]
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Since f € Cy(S), it vanishes at infinity, and it is therefore uniformly continuous.
This implies that

sup|f:U+Bt) f(:c)‘—>0 as t10 a.s.,

zesS

since By — 0 almost surely. It follows by the dominated convergence theorem that
ITf — Il = 0as ¢ L0.



(b) If f € Cy(S) it is not necessarily uniformly continuous, so that the above argument
does not hold. For example consider f(x) = max{cos(z?),0}. Then it can be shown
that for every ¢ > 0 there exists an z € S such that E° [f(z + B;)] — f(x)] is bounded
away from zero independent of ¢, so that 7} f does not converge to f.

T3. (G1): Firstly, D(L) is a vector space. To use the Stone-Weierstrass theorem we further
need to show that D(L) separates points and vanishes nowhere. Consider the functions
fa(x) = exp(—(z — a)?) € D(L). Then for all pairs z # y in S we have f,(z) = 1 and
fz(y) < 1, so that D(L) separates points. Furthermore since f,(z) = 1, the space vanishes
nowhere. The theorem now states that D(L) is dense in Cy(.5).

(G2): Let A > 0 and g = f — Af’. Since f € Cyp(R) we have inf, f(x) < 0. Similarly
inf, g(xz) < 0. If inf, f(z) = 0 we immediately have inf, g(z) < inf, f(x). Now suppose
inf, f(x) < 0, then since f is continuous there exists xy € S with f(z¢) = inf, f(z) and
f'(xg) = 0. We now get

inf f(z) = f(wo) = f(w0) = Af'(w0) = inf g(z).

(G3): Let g € Cy(s). We need to show that there exists an f € D(L) with f — \f' = g.
This differential equation is solved by
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To make the computations easier we take
1

<1
= — -3y

so that

flz) = / ig(y)ei(””‘y)dy.

We need to show that f € Cy(R). Continuity follows immediately, so it remains to show
that f vanishes at infinity. We have

1
|f@)] << sup |g(y)|A =0 as z— oo
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For the other limit we can write

0
f(z) = —/ ;g(w — y)exvdy.

The integrand is bounded by 1/g||, so that by dominated convergence
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(G4): Let A > 0. Consider f,(z) = exp (‘%2), and

—X

2 2z —a?
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gn(x) = fulz) = Afy(2) eXp( " >+ - eXp( - )
Then sup,, ||gn|| < 00, fn — 1 and g, — 1 pointwise as n — oo.

This belongs to the process that moves deterministically to the right at unit speed: X; =
Xo + t. The semigroup of this process is given by

(Tif)(z) = E*[f(Xy)] = flz + 1),
This process indeed has generator f':

o D@ = fa) @t = f@)
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